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Phase transitions in a forest-fire model

S. Clar, K. Schenk, and F. Schwabl
Institut für Theoretische Physik, Physik-Department der Technischen Universita¨t München, James-Franck-Strabe,

D-85747 Garching, Germany
~Received 11 July 1996; revised manuscript received 26 September 1996!

We investigate a forest-fire model with the density of empty sites as a control parameter. The model exhibits
three phases, separated by one first-order phase transition and one ‘‘mixed’’ phase transition which shows
critical behavior on only one side and hysteresis. The critical behavior is found to be that of the self-organized
critical forest-fire model@B. Drossel and F. Schwabl, Phys. Rev. Lett.69, 1629 ~1992!#, whereas in the
adjacent phase one finds the spiral waves of the Bak, Chen, and Tang forest-fire model@P. Bak, K. Chen, and
C. Tang, Phys. Lett. A147, 297 ~1990!#. In the third phase one observes clustering of trees with the fire
burning at the edges of the clusters. The relation between the density distribution in the spiral state and the
percolation threshold is explained and the implications for stationary states with spiral waves in arbitrary
excitable systems are discussed. Furthermore, we comment on the possibility of mapping self-organized critical
systems onto ‘‘ordinary’’ critical systems.@S1063-651X~97!04502-9#

PACS number~s!: 64.60.Lx, 05.70.Jk, 05.70.Ln
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I. INTRODUCTION

In 1990, Bak, Chen, and Tang introduced a simple mo
for the spreading of a fire in a forest or the spreading
disease in a population@1#. The individuals~sites on a square
lattice in two dimensions! can be in one of three states: tre
~healthy, excitable!, tree on fire~infected, excited!, and ashes
or empty site~immune or dead, refractory!. New individuals
are ‘‘fed’’ into the system with a small ratep. Whether the
third state is considered as death of an individual andp con-
sequently as the birth rate of new individuals, or as a stat
immunity, and 1/p as the time scale of the loss of that im
munity, is a matter of interpretation. In the following, w
will use the terms tree, fire, empty site, and refer top as the
tree growth rate. The exact rules of the model@1# were as
follows: ~i! at each time step trees grow at empty sites wit
small probabilityp, ~ii ! trees on fire will burn down at the
next time step and turn to empty sites,~iii ! the fire on a site
will spread to the trees at its nearest-neighbor sites at
next time step. Although originally claimed to be critical
the limit p→0, the simulations in@2,3# showed that the
model does not display criticality. Instead, one could obse
quasideterministic spiral waves of fires.

In 1992, Drossel and Schwabl introduced the se
organized critical forest-fire model~SOC FFM! @4# with an
additional rule:~iv! if no nearest neighbor is burning, a tre
catches fire with a small ‘‘lightning’’ probabilityf . Under
the condition of a double separation of time scales@time
between two lightning strokes 1/f @ ~time scale of tree
growth! 1/p @ ~time needed to burn down large tree clu
ters!# the model shows critical behavior over a wide range
parameter values. The properties of this model were inve
gated in, e.g.,@5–8#.

In this paper, we shall investigate a model with the sa
type of interactions while keeping constant the number
empty sites or immune individuals. Their density is the co
trol parameter of the model. Parameters likep or f do not
enter the model. We will show that the model exhibits thr
phases, two of which can be shown to display the same
551063-651X/97/55~3!/2174~10!/$10.00
el
f

of

a

e

e

-

f
ti-

e
f
-

e
e-

havior as the above mentioned models. The third ph
shows clustering of trees with the fire burning at the edge
the clusters.

In the ‘‘spiral-wave’’ phase, which exists not only in thi
model, but in a large number of excitable systems~for a
review on excitable systems see, e.g.,@9,10#!, we will point
out an interesting relation to the nonequilibrium percolati
model of@11#. There, the tree density was the control para
eter and the following rules were iterated:~i! Lightning
strikes an arbitrary site in the system. If the site is occupi
the whole cluster ofs trees, which is connected to this si
~by nearest-neighbor coupling!, burns down, i.e., the trees o
this cluster turn to empty sites.~ii ! Then s new trees are
grown at randomly chosen empty sites~including the ones
that have just turned empty!. The close relation between thi
model and the model treated in the present paper will ena
us to identify the mechanism that determines the density
tribution of excitable constituents and, in particular, the de
sity immediately in front of excitation fronts in the spira
wave phase of excitable systems.

Furthermore, the model presented in this paper, as we
the model in@11#, are examples of reformulations of a SO
model in terms of a control parameter~the density of trees or
empty sites, respectively!. Both models indicate that the
claim in @12# that all SOC models can be mapped onto or
nary critical systems exhibiting a subcritical phase, a criti
phase with a smoothly varying order parameter and a crit
point that separates the two phases, is not true in gen
Nonequilibrium systems and their phase transitions sho
much richer behavior than equilibrium systems, with ma
features that are unknown in equilibrium.

II. THE MODEL

The model is defined on ad-dimensional hypercubic lat
tice with Ld sites. If not stated otherwise, we choosed52
and periodic boundary conditions in the following.reL

d sites
are randomly chosen to be empty. The density of empty s
re is the control parameter of the model. The remaining s
2174 © 1997 The American Physical Society
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55 2175PHASE TRANSITIONS IN A FOREST-FIRE MODEL
are randomly filled with trees and fires. Their densities
denoted byr t andr f . It is alwaysr t1re1r f51. The exact
values ofr t andr f in the initial state do not affect the sta
tionary state, except in the vicinity of certain points whi
will be discussed later.

The system is iterated as follows:~i! all trees on fire will
burn down the next time step,~ii ! the fire on a site will
spread to the trees at its nearest-neighbor sites in the
time step,~iii ! after each time step the same number of tr
that have burnt down grow at randomly chosen empty s
~including the ones which have just become empty!, thereby
keepingre fixed, and~iv! if the fire dies out, a randomly
chosen tree catches fire spontaneously.

The motivation of rule~iv! is the following: We want to
investigate the system under the action of a vanishin
small lightning probability. Since the process which is d
scribed by rule~iv! may then take very long in real time, bu
nevertheless can be simulated in one iteration step, rule~iv!
represents an acceleration of the real process. When c
lating temporal averages of the fire density, this point ha
be considered.

The reason for choosing the density of empty sites
parameter and not the density of trees is the following: C
sider a system that consists only of trees and replace one
by a fire. In the next step we have four fires, but only o
empty site to grow new trees. This extreme example sh
that there might be situations in which it is not possible
keep the density of trees constant. The density of em
sites, in turn, can always be kept constant for arbitrary val
within the interval@0,1#.

In the following sections, we discuss the properties of
stationary state as function of the density of empty s
re . In Sec. III, we start with a high density of empty site
and investigate the region of vanishing fire density. In S
IV, we lower the density of empty sites which leads to a st
with spiral waves. A detailed description of the mechani
which determines the density distribution in the spiral stat
given in Sec. V. Section VI investigates the more homo
neous, ‘‘mixed’’ phase that can be observed after furt
decreasing the density of empty sites. Up to here, only t
dimensional square lattices are considered. Section VII tr
other dimensions and lattice types. In Sec. VIII, we comm
on the issue of mapping self-organized criticality onto or
nary criticality. Finally, in the Appendix, we present som
general properties of the order parameter curve.

III. REGION OF VANISHING FIRE DENSITY
AND CRITICAL POINT

For re&1, there exist only very small tree clusters, an
consequently, if one starts a fire by setting on fire a rando
chosen tree, it soon dies out, and one has to start a new
The average number of treess̄ destroyed by a fire therefore i
finite and small, and in the thermodynamic limitL→` the
fire densityr f equals zero~taking into account that rule~iv!
is an acceleration of a process which takes infinitely long
real time!. In our simulations the maximum system size w
60002. With decreasingre , s̄ increases, but still remain
finite, and thereforer f50. If re is decreased further, w
finally arrive at a critical density re

c,1'59.2%
(r t

c,1512re
c,1'40.8%), wheres̄ diverges with a power law
e
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s̄}(re2re
c,1)2d, with some exponentd. A snapshot of the

system in the vicinity ofre
c,1 is shown in Fig. 1.

The critical behavior close tore
c,1 can be described by

exponents which are defined as in percolation theory@13#.
The size distribution of tree clusters isn(s)}s2tC(s/smax)
with a cutoff functionC. smax is the size of the largest cluste
in the system and diverges forre→re

c,1 . The fractal dimen-
sion m of the clusters is defined byR(s)}s1/m, whereR is
the radius of gyration of a cluster. The correlation length
given by j}(re2re

c,1)2n. More exponents can be define
and scaling relations between them can be derived~see, e.g.,
@5–8#!.

The critical exponents found in the simulation
@t52.14(4), m51.95(2), andn50.28# are the same as in
the SOC FFM, when appropriately redefined„for n one has
to change variables fromf /p to re via re2re

c,1}( f /p)1/d

~see@8#!…. Also the critical densityr t
c,1'40.8% remains the

same. This model displays exactly the same critical behav
as the SOC FFM and the model of@11#, because in a system
which is much larger than the correlation length, neither
difference between a globally conserved densityre ~this
model and@11#! and a densityre , which is only conserved
on an average~SOC FFM!, nor the difference between in
stantaneous regrowth of trees~this model! or delayed re-
growth ~SOC FFM and@11#! can be seen on length scale
comparable to the correlation length.

In the stationary state of the SOC FFM
s̄5pre / f (12re), since in one time step there arer tL

df
lightning strokes andreL

dp new trees are growing. There
fore, if we measure in our models̄ for a certain value of the
control parameterre we know that its behavior is that of the
SOC FFM for f /p5re / s̄(12re).

IV. REGION OF FINITE FIRE DENSITY I: SPIRALS

If we decrease the number of empty sites beyond the c
cal pointre

c,1 the size of the largest forest cluster diverge

FIG. 1. Snapshot of the stationary state in the ‘‘SOC’’ pha
near the critical densityre

c,1'59.2%. L52000 andre559.8%.
Trees are black and empty sites are white.
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2176 55S. CLAR, K. SCHENK, AND F. SCHWABL
and we would expect the fire not to be extinguished a
more. Therefore, one might expect the fire densityr f to be-
have as an order parameter that sets in atre

c,1 and grows
smoothly from zero to finite values, obeying some power l
r f}(re

c,12re)
b. Instead, the following behavior can be o

served in the simulations: The system restructures, fires g
ering to form spirals and the regions of different densit
~see Fig. 1! vanishing in favor of a smooth density distribu
tion between the spiral arms~see Fig. 2!. The behavior of the
spirals is quasideterministic. Immediately in front of the fi
fronts the tree density is very high and immediately beh
them it is very low. The density distribution is treated
more detail in Sec. V. The distanceD between two spiral
arms is finite and constant throughout the system. The
density forre5re

c,120 is also finite. Decreasingre further,
the distance between the spiral arms becomes smaller an
fire density becomes larger, since it is now easier for the
to survive. Atre5re

c,3'54.2%, the spiral state breaks dow
and another restructuring to a new phase takes place, w
will be treated in Sec. VI.

For re<re
c,1 the fire is able to sustain itself and it is n

longer necessary to keep it alive by setting on fire rando
chosen trees each time the fire has died out. The ‘‘exte
field’’ can be set zero. In terms of tree growth and lightnin
we have a model with tree growth ratep, but without light-
ning ratef . Therefore, the behavior in the spiral state at so
densityre is exactly the same as in the forest-fire model
Bak, Chen, and Tang in@1# for a certain value of the tree
growth probabilityp, since in the thermodynamic limit i
does not matter which of the variables is kept fixed. T
fluctuations of the densities in the Bak model vanish
L→`, as do the fluctuations of the number of new grow
trees per time step in this model.

In the Bak model, one observes a diverging distance

FIG. 2. Snapshot of the stationary state in the ‘‘spiral-wav
phase forL51000 andre559%. Trees are gray and empty sit
are white. The fires are black, but difficult to see. They are loca
at those lines where the density of trees changes abruptly.
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tween spiral arms forp→0. If we start in our model with a
spiral state and increasere beyondre

c,1 ~corresponding to a
decrease ofp), the system does not undergo a phase tra
tion at re5re

c,1 , but chooses to retain the spiral state up
re5re

c,2'60.8%. This value ofre with D5` corresponds
to p50 in the Bak model. As function ofp the order param-
eter follows the power lawr f}p ~see the explanation in Sec
V!.

As already found in@2,3#, the spiral state does not displa
criticality or scale invariance in the sense of clusters
events on all length scales. For a particular value ofp the
model does not show events on all scales, but only on
scale 1/p, and behaves essentially deterministic. Howev
the model allows similarity transformations, since a syst
with parameterp1 can be obtained by rescaling a syste
with parameterp2.

What we have found is a discontinuous phase transi
which is neither of first nor of second order. We find hyste
esis ~the state of the system for a density in the interv
@re

c,1 ;re
c,2# depends on from which side one approaches

region!, an order parameter that increases smoothly fr
zero atre

c,2 to finite values, and critical behavior on only on
side of the transition (re>re

c,1 , the side with vanishing orde
parameter!. The order parameter curve for a two-dimension
system is shown in Fig. 3.

The reason why the critical pointre5re
c,1 is not an ordi-

nary critical point is the same as in@11#. From Fig. 1, it can
be seen that, in addition to large tree clusters, there exist
large clusters of empty sites. In contrast to ordinary criti
phenomena~e.g., percolation!, there is no homogeneousl
distributed set of large clusters that could join atre5re

c,1 to
form an infinite cluster that spans the whole system. Rat
the largest cluster has to compete with all other regions w
different densities~which, due to the very nature of the dy
namics, are nothing more than different growth stages of
largest cluster itself! for space in the system. Or, to put
differently, an infinite cluster, like in percolation, is impos
sible, because the system has to provide space not only
the infinite cluster, but also for a large number of ‘‘younge
copies of it. The violation of the hyperscaling relatio
d5m(t21) also indicates the inhomogeneous distributi
of density in the forest-fire model. As explained in@5#, the
violation is equivalent to the statement that not every par
the system contains a spanning cluster at criticality.

V. DENSITY DISTRIBUTION IN THE SPIRAL STATE

In order to better understand the density distribution in
spiral state, we shall now investigate a state with a sin
front propagating through a square system with perio
boundary conditions~see the left side of Fig. 4!. Since this
can be considered to be a section of a spiral state~see the
right side of Fig. 4!, and the spiral state, in turn, can b
completely covered by such sections~if the edge length is
chosen to be equal to the distanceD between two successiv
arms of the spirals!, it is sufficient to understand the densi
distribution in this part of the whole system. Instead of su
cessive fire fronts passing through the small section of
system, one might also think of a single fire front whic
repeatedly leaves the section at one end and reenters a

’

d
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55 2177PHASE TRANSITIONS IN A FOREST-FIRE MODEL
FIG. 3. The order parameter fire densityr f as
function of the density of empty sitesre in two
dimensions~—, square lattice; . . . , triangular
lattice!. The magnified sections in the insets sho
the two transitions of the two-dimensional syste
on a square lattice. To the left, one can see
first-order phase transition atre

c,3 and re
c,4 be-

tween the mixed phase and the spiral phase,
to the right the ‘‘mixed’’ phase transition atre

c,1

and re
c,2 between the spiral phase and the SO

phase. The arrows indicate the directions
which the transitions are traversed.
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other end due to periodic boundary conditions.
The tree density immediately in front of the fire fro

r t
beforehas to be larger than or equal to the percolation thre
old for site percolation on a square latticepc'0.59, for oth-
erwise there would not be propagation. With increasing d
tance from the fire front, the tree density smoothly decrea
until one finally arrives again on the other side of the fro
where the density takes its lowest valuer t

after. If r t
beforewas

exactly the percolation threshold, the fire would burn dow
vanishing fraction of all trees, and the propagation speed
the front would be zero. The densities in front of and beh
the fire front would be equal (r t

before5pc5r t
after), as claimed

in @2#. However, the simulations clearly show that this is n
the case.r t

before is higher than the percolation threshold, t
densityr t

after in a region after the fire has passed through i
very low, but not equal to zero, and the propagation spee
the fire frontsvfire is nonvanishing (0.760.05 site per itera-
tion step nearre

c,2). What is the mechanism that determin
the density distribution and the values of the density imm
diately in front of and behind the fire front?

We shall approximate the periodic ‘‘single front’’ sta
even further by a coarsened state with a finite but large n
bern of stripes of equal width and different densities para
to the fire front. Each stripe has homogeneous density.
r t
1 , . . . ,r t

n be the densities of then stripes, starting with the
h-

-
s,
,

a
of
d

t

s
of

-

-
l
et

highest density.r t
i is then the average density of the origin

smooth ‘‘single front’’ system in the region covered by th
i th stripe (r t

1'r t
beforeandr t

n'r t
after). We also coarsen time

in that we consider the propagation of the fire front from t
bottom of one stripe to its top as one time step. Growing
new trees then takes place after each~coarsened! time step. If
one sets on fire the baseline of the stripe with highest d
sity, the infinite cluster in that stripe will surely be set on fir
since it has many connections with the baseline, and
propagation of the fire front effectively causes the remova
the infinite cluster from this stripe.

The propagation of the fire front therefore can be mode
as follows. First, we identify the infinite cluster in the strip
with highest density and remove it from the system. Doi
this one has to respect the boundaries of the stripes, altho
the infinite cluster of course extends into the neighbor
stripes. The strength of the infinite cluster at densityr t

1 is
denotedP(r t

1). @We now define also the densityr t
n11 of the

stripe which contained the infinite cluster after its remov
i.e., r t

n115r t
12P(r t

1).# Second, theP(r t
1)D2/n trees of the

infinite cluster are redistributed randomly amongst the em
sites of the whole system of sizeD2. If the system is to be
stationary, the stripes thereby just exchange their densi
i.e., the stripe with second highest densityr t

2 now assumes
the highest densityr t

1 , and so on. From that condition, on
can easily derive the equation
be
f
d

FIG. 4. A spiral state at densityre559% with
distanceD between successive fire fronts can
covered by quadratic ‘‘single front’’ sections o
edge lengthD. Trees are gray, fires are black, an
empty sites are white.
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2178 55S. CLAR, K. SCHENK, AND F. SCHWABL
r t
i215r t

i1~r t
12r t

n11!~12r t
i !/@n~12r t!1r t

12r t
n11#

for i52, . . . ,n11. The last factor on the right-hand sid
represents the fraction of trees of the infinite cluster that
regrown in the stripe with densityr t

i . We finally obtain

12r t
1

12r t
2 5

12r t
2

12r t
3 5•••5

12r t
n

12r t
n11 . ~1!

Together withr t5(1/n)( i51
n r t

i we haven equations for
n11 densities. These equations were already derived in@11#
for a related model. The average density in a system w
n stripes is then

r t512
12r t

n11

n (
i51

n S 12r t
1

12r t
n11D i /n

512
r t
12r t

n11

n$@~12r t
1!/~12r t

n11!#21/n21%
.

In the system that we are really interested in, the den
varies smoothly, so we have to consider largen. In @11# it
was argued thatr t

1 has always to be greater than or equal
a certain constantr t*'0.625.pc . If this were not the case
a traversing fire front would leave behind large tree clust
which would lead to inhomogeneities that prevented the n
fire front from passing through in the same quasidetermi
tic way than the first one. Likewise,r t

n11 has always to be
greater than or equal to another consta
r t

`5r t*2P(r t* )'0.078.r t* is always larger than the corre
sponding percolation thresholdpc . These constants have
more fundamental significance independently of this mo
and of any states with spiral waves~for details see@11,14#!.
The caser t

15r t* and r t
n115r t

` corresponds to the lowes
possible overall density and therefore to the state with i
nite spirals atp50 or re5re

c,2 . In this case, we have
r t
before5r t* andr t

after5r t
` .

The overall density in the spiral state can then be writ
as

r t512
r t
before2r t

after

limn→`nF S 12r t
before

12r t
after D 21/n

21G
512

r t
before2r t

after

limn→`nF12 lnS 12r t
before

12r t
after D Y n6•••21G

512
r t
before2r t

after

lnS 12r t
after

12r t
beforeD . ~2!

For r t
before5r t* andr t

after5r t
` , this density should be equa

to the densityr t
c,2 of the state with spirals of infinite exten

sion. With the values ofr t* andr t
` measured in@11# ~0.625
re

th

ty

s
xt
-

t

l

-

n

and 0.078 for the square lattice, 0.533 and 0.062 for
triangular lattice!, one arrives atr t

c,2,calculated50.39260.002
for the square lattice andr t

c,2,calculated50.32560.002 for the
triangular lattice, in excellent agreement with the valu
r t
c,250.39260.002 for the square lattice andr t

c,2

50.32360.005 for the triangular lattice, measured in the s
ral state of this model.

Since Eq.~1! represents a geometric series, the density
function of the distance from the fire front is given by

r t~x!512~12r t
after!S 12r t

before

12r t
after D x/D, ~3!

with r t(0)5r t
after*r t

` andr t(D)5r t
before*r t*

With our new knowledge about the nature of the spi
state, we can derive an equation for the distanceD between
the fire fronts as function of the tree growth probabilityp.
Let the speed of the fire frontsvfire(r t

before) be measured in
sites per iteration step. LikeP it depends on the density in
front of the fire frontr t

before. The amount of matter burnt in
unit time is thenP(r t

before)vfire(r t
before)D. This has to be equa

to the number of growing trees per unit time (12r t)pD2,
leading to the relationship

D5
P~r t

before!vfire~r t
before!

12r t

1

p
. ~4!

This confirms the observed scaling behaviorD}p21 and ad-
ditionally delivers the constant of proportionality, bein
0.6360.05 for r t

before5r t* and in good agreement with th
simulations. Since the fire density is inversely proportiona
the distance between the spiral arms, we findr f}p, i.e., the
order parameter exponentb equals one. This can also b
seen from the equalityr f5pre @15#, which states that the
number of burnt trees has to be equal to the number of n
grown trees in the stationary state.

If one chooses a fixed site behind the front and wants
know the tree density in this region as function of the tim
t until atT5D/vfire the next front passes through, one has
replace in Eq.~3! x by vfiret and arrives with Eq.~4! at

r t~ t !512~12r t
after!F S 12r t

before

12r t
after D [ ~12r t!/P~r t

before
!] G pt,

which with Eq.~2! andP(r t
before)5r t

before2r t
after leads to

r t~ t !512~12r t
after!e2pt. ~5!

Equation ~5! can also be derived easily from
]r t /]t5p(12r t), first stated in@2#. This shows that our
picture is in accordance with the basic equations describ
the spiral state.

One additional point concerning Eq.~4! should be men-
tioned. Equation~4! relatesD, r t , andp. If one regards, e.g.
D as fixed, only the product (12r t)p is determined. This
reflects the fact that in a ‘‘single front’’ state with fixed edg
length D one can have different overall densitiesr t . The
other quantities adjust themselves automatically. Howe
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55 2179PHASE TRANSITIONS IN A FOREST-FIRE MODEL
in the ‘‘real’’ spiral state, fixingD determines invariably al
other quantities. Since the spiral state can be constructe
connecting ‘‘single front’’ systems, this seems to be a co
tradiction. The solution of this apparent contradiction is th
one has neglected the spiral centers. They yield a sec
unfortunately unknown, relation betweenD, r t , andp. This
relation is brought about by the rotation of the spiral cente
r t and p determine the angular velocityv of the rotation,
which, in turn, determinesD via D5vfireT5vfire2p/v. For
the calculation ofr t

c,2 with Eq. ~2!, using the decomposition
into ‘‘single front’’ states, it is justified to neglect the spira
centers, because in the thermodynamic limit their num
density is zero. Nevertheless, one has to be aware of the
that, although not important for calculatingr t

c,2 , the spiral
centers are the ‘‘pacemakers’’ of the spirals and theref
responsible for the magnitude ofD.

Another interesting point is that the densityre
c,2 can also

be found from an extremum principle first stated in@4#.
There, the extremum principle was erroneously used to
termine the critical densityr t

c,1 of the SOC FFM. The fire
was believed to destroy as many trees as it can at the cri
point, but the result'39% was in contradiction to the mea
sured valuer t

c,1'40.8% @5–8#. However, the equations de
rived in @4# from the extremum principle can easily be se
to be equivalent to Eq.~2! for the spiral state. Therefore, th
principle yields the correct critical density, but for a diffe
ent, then unknown, phase of the model.

From the results found in this section one can draw so
conclusions for excitable media in general. In many excita
systems stationary states with spiral waves can be fou
Famous examples are, e.g., the Belousov-Zabhotinski~BZ!
reaction@16# or the electrophysiological activity of heart tis
sue@17#. If the spirals are to sustain themselves in a stati
ary state, the density of the excitable constituents~the
‘‘fuel’’ ! in a region immediately before a fire front pass
through it r t

before has always to be larger than or equal
some thresholdr t* , which, in turn, is larger than the perco
lation thresholdpc for that particular situation. The percola
tion threshold can, in principle, be measured by preparin
homogeneous system with a certain density of excitable c
stituents and ‘‘exciting’’ one edge of the system. If the r
sulting excitation front dies out before reaching the other e
of the system, we are still below the percolation thresho
and if it reaches the other end in finite time we are above
the percolation threshold the front barely survives and ne
an infinitely long time to reach the other end. The over
density of the excitable constituents has to be above
valuer t

c,2 , below which no excitation can be sustained.
A system that displays spiral waves or avalanches~con-

centric waves, target patterns! depending on the density o
excitable constituents are, e.g., populations of dictyostel
discoideum amoebae@18#. There, circular waves of signalin
activity emanating from pacemakers are found for low c
densities, whereas for high cell densities one observes s
waves.

VI. REGION OF FINITE FIRE DENSITY II:
THE MIXED PHASE

With decreasingre , the distance between the spiral arm
becomes smaller and the spirals finally break up to sin
by
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fronts. This change occurs continuously. The fronts, wh
are more irregular than the spirals, have also been obse
in the model of Bak, Chen, and Tang. Decreasingre further,
the coherence length of the fronts soon becomes compar
with the lattice constant, and the system reorganizes it
discontinuously into another state, which constitutes the th
phase of this model. This happens atre5re

c,3'54.2%. The
simulations show that the trees in the new state tend
‘‘cluster’’ ~to form regions with higher tree density! with the
fire burning at their edges~see Fig. 5!. To sustain this type of
structure, a certain minimum density of fires is needed.
re5re

c,3 , r f jumps from 2% to 10%. If one lowersre fur-
ther, the size of the ‘‘clusters’’ decreases, and the fire den
increases. The system as a whole becomes more hom
neous ~trees, fires, and empty sites are ‘‘mixed’’!. For
re50, we observer t5r f51/2 for all dimensions and lattice
types. The order parameter curve starts linearly atre50 with
a slope that depends only on the number of nearest neigh
z ~see the explanations in the Appendix!. If we start with
small re and traverse the phase transition in the other dir
tion, it takes place at differentre (re

c,4'54.7%.re
c,3), i.e.,

one has a first-order phase transition with hysteresis.
order parameter as function of the density of empty site
shown in Fig. 3.

VII. DIMENSIONS OTHER THAN TWO
AND DIFFERENT LATTICE TYPES

Since in one dimension there cannot exist spiral wav
we expect a simpler phase diagram than in two dimensio
For re50 we are dealing with a completely determinist
one-dimensional cellular automaton where each site can
in one of two states~automaton no. 54, according to th
classification scheme of Wolfram@19#!. In the stationary
state each tree has at least one fire as a neighbor and

FIG. 5. Snapshot of the stationary state in the ‘‘mixed’’ pha
near the critical densityre

c,4'54.7%. L5180 and re554.6%.
Trees are gray, fires are black, and empty sites are white.
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2180 55S. CLAR, K. SCHENK, AND F. SCHWABL
versa. Strings of more than two trees or fires are not sta
since sooner or later they would be invaded by fires. T
stationary state is periodic with period 2. The introduction
empty sites makes the automaton nondeterministic, bec
the trees can now choose where to grow. This variant has
been investigated so far. In the simulations, system size
up to L5107 were used. The measured order parame
curves for the one-dimensional case can be seen in Fig. 6
addition to the usual nearest-neighbor interaction, we sim
lated also a variant where the fire is allowed to jump ov
one empty site if necessary. The curves start linearly
r f5r t51/2 with different slopes~for an explanation see the
Appendix!. For increasingre one observes the same ph
nomena as in two dimensions. The tree clusters@strings in
one dimension~1D!# become larger and are accompanied
fire on at least one of their ends. Atre5re

c,4'20%
(re

c,4'26% for next-nearest-neighbor interaction! the den-
sity of empty sites is too high for this structure to surviv
and the fire density drops from a finite value of appro
mately 20% to zero, since the system does not have
possibility to rearrange itself into a spiral-wave phase.

FIG. 6. The order parameter fire densityr f as function of the
density of empty sitesre in one dimension~—, nearest-neighbor
interaction; . . . , the fire isallowed to jump over one empty site i
necessary!. For re.re

c,4'0.2 andre.re
c,4'0.26, respectively, the

fire dies out. In the reverse direction,r f remains zero until
re5re

c,150.
le,
e
f
se
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stead, now isolated chunks of trees are ignited and bur
down in finite time. In the reverse direction,r f remains zero
until re5re

c,150, i.e., the hysteresis in one dimension is
maximum. In the vicinity of the point (re50,r f50), the
critical behavior of the SOC FFM in one dimension@20# is
reproduced. Since there exists no spiral phase in one dime
sion, there are nore

c,2 andre
c,3 .

The two-dimensional simulations were also done with a
triangular lattice and yielded the same behavior as for the
square lattice~for the order parameter curve see Fig. 3!. The
values ofre

c,1,2,3,4and the slope of the order parameter curve
for re→0 of course are different~see Table I!.

In three dimensions, we could identify a subcritical phase
as well as a mixed phase. The order parameter curve is plo
ted in Fig. 7. Due to smallL (L<300) the critical exponents
in the subcritical phase and the critical densityre

c,1 could not
be measured with sufficient accuracy. The mixed phase i
three dimensions shows analogous behavior to the two
dimensional mixed phase and does not display new phenom
ena. The fire density curve could not be measured for ver
small r f (r f&0.2%), due to finite size effects. If one ex-
trapolates the fire density curve to the pointr f50, one ar-
rives at 77.3%, therefore,re

c,4 lies between the last simulated

FIG. 7. The order parameter fire densityr f as function of the
density of empty sitesre in three dimensions. The extrapolation of
the fire curve yields the critical densityre

c,4'77.1%60.2%.
TABLE I. The simulation results for various dimensions and lattice types. In the case 1D~* ! the fire was
allowed to jump over one empty site, if necessary.

Lattice type 1D 1D~* ! 2D 2D triangular 3D

re
c,1 0% 0% 59.2~1!% 66.4~4!%a 78.1~1!%a

re
c,2 - - 60.8~5!% 67.7~5!% -

re
c,3 - - 54.2% 61.7% -

re
c,4 20% 26% 54.7% 62.2% 77.1~2!%

2
]rf
]re

U
re50

1.00~1! 0.85~1! 0.67~1! 0.54~1! 0.55~1!

aTaken from@8#.
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55 2181PHASE TRANSITIONS IN A FOREST-FIRE MODEL
density 76.9% and 77.3%, i.e.,re
c,4577.1%60.2%. The fact

that there exists a gap between the end point of the crit
phasere

c,1'78.1% ~taken from@8#! and the end point of the
mixed phasere

c,4 leaves open the possibility of the existen
of a third phase containing the three-dimensional analo
of spiral waves~scroll waves!. Due to the finite size of our
sample, however, we could only observe two-dimension
flat fire fronts in that region. The results for all simulate
lattices and dimensions can be seen in Table I.

VIII. MAPPING SELF-ORGANIZED CRITICALITY
ONTO CRITICALITY

The model we have investigated in this paper is an
ample of a system which is far from equilibrium. It shows
wealth of interesting structures depending on the density
empty sitesre . For largere , we find a region of vanishing
fire density which contains the critical behavior of the SO
forest-fire model. For lower density of empty sites we obt
the spiral waves of the Bak, Chen, and Tang@1# model.
Finally, for even lowerre , we find a phase in which the
trees show the tendency to form clusters with the fire burn
at their edges. The transition between the second and
third phase is of first order, whereas the transition betw
the first and the second phase is rather unconventional.
find hysteresis and critical behavior on only one side of
transition. The close relation of the spiral-wave phase w
the synchronized phase of the model of@11# allows us to
understand the mechanism which determines the density
tribution in the spiral state of not only this model, but
arbitrary excitable systems. In particular, it yields the dens
in front of the excitation fronts, the minimum density o
excitable constituents that is necessary to sustain the ex
tion, and the factor of proportionality between the distance
the spiral arms and the ‘‘tree growth’’ ratep.

Apart from being interesting in its own right, the mod
presented in this paper~like the model of@11#! has to be seen
also in the context of the general claim of@12#, that the
critical points of SOC models can be regarded as ordin
critical points of second-order phase transitions. It w
claimed in@12# that this should be possible for all SOC mo
els. There were also given instructions on how to achi
this goal for some particular models, including the forest-fi
model.

The results in this paper and in@11#, however, disprove
this hypothesis. While the subcritical side of the transition
both models behaves as expected, the other side~the side
with a supposed nonvanishing order parameter! always ex-
hibits surprising features. In the model of@11# we found a
whole critical region and lots of first-order phase transitio
whereas the actual model shows hysteresis and no critic
at all.

Although these ‘‘negative’’ results cannot strictly rule o
the possibility that for some further slight change of the ru
one might succeed in obtaining the usual ‘‘decent’’ behav
of the order parameter, the argument at the end of Sec.
together with the simulation results of this paper and of@11#
make it seem very unlikely. We consider it to be more pro
able that a subset of SOC models are ‘‘only’’ ordinary cri
cal models ‘‘in disguise.’’ With these models the mappi
proposed in@12# should be possible~the results in@21# also
al
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seem to point in that direction!, while there also exist genu-
ine SOC models for which this procedure cannot be carried
through. The forest-fire model seems to belong to the secon
class.

We suggest that similar phenomena and difficulties~criti-
cal regions, hysteresis at the critical point, critical behavior
on only one side! will also be found in other models of SOC,
as, e.g., the sandpile, earthquake, and evolution models.

This work was supported by the Deutsche Forschungsge
meinschaft~DFG! under Contract No. Schw 348/7-1. We
thank B. Drossel for fruitful discussions.

APPENDIX: SOME PROPERTIES
OF THE ORDER PARAMETER CURVE

All order parameter curves considered in the previous sec
tions started at the pointr f5r t51/2,re50. This starting
point is independent of dimension or lattice type, which can
be seen as follows. Forre50 each tree will sooner or later
be set on fire by one of itsz nearest neighbors. Once having
set the tree on fire, the fire jumps forever between this site
and its neighbors, because its neighbors, after burning dow
have to become trees again in the next time step~there are no
empty sites!. The dynamics of these 11z sites then is fixed.
After each time step trees and fires change places. But th
fire can still propagate to other sites, so that finally the whole
system consists of such ‘‘blinking’’ regions. The state is pe-
riodic with period 2 and the average fire and tree densitie
have to be 1/2. For a random initial state the densities ar
1/2 also without averaging.

The slope ofr f(re) for re→0 depends only on the num-
ber of nearest neighborsz and lies always within the interval
@21;21/2#. This can be seen as follows. If one takes a
stationary state atre50 and inserts some empty sites by
removing an equal number of trees and fires, the system wi
not remain in this state~with a slope of21/2), but will
adjust itself to a new stationary state with an even lower
number of fires, since the spreading conditions for the fire
are now worse than before due to the inserted empty site
The magnitude of this effect depends only on the coordina
tion numberz. The larger isz, the smaller is the effect. On an
infinite-dimensional lattice, the fire density will not readjust
itself at all, because no fire can feel the empty sites. The
slope in this case is the maximum possible slope21/2. This
can also be seen mathematically. All fires have been trees
the preceding time step, thereforer f<r t in the stationary

FIG. 8. The possible effects of the introduction of one empty
site into a one-dimensional system atre50.
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FIG. 9. The order parameter fire densityr f

for all simulated dimensions and lattice types
function of the tree densityr t . In the case 1D~* !
the fire was allowed to jump over one empty sit
if necessary.
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state. Withr f1re1r t51 it follows r f<1/22re/2. Since
for re50 both sides of the last inequality are identical, o
can differentiate and finds]r f /]reure50<21/2. 1/2 is the
upper bound for the slope.

The lower bound for the slope equals21. This value is
assumed for one dimension, as will be shown in the follo
ing by considering the effect of introducing one empty s
into the stationary 1D state atre50. Since the one-
dimensional lattice has the smallest possible number
neighbors, its slope represents the lower bound. As argue
Sec. VII, in the one-dimensional stationary state atre50 no
more than two neighboring sites can be in the same stat
a symmetric state, where both neighbors of a tree are
and vice versa, i.e., where fires and trees are strictly alter
ing, an empty site does not modify its neighborhood. Sin
the effects of the empty site are only local, it is sufficient
consider only three cases: One pair of sites in the same
~see the left part of Fig. 8!, collision of two pairs~see the
middle part of Fig. 8!, and annihilation of two pairs~see the
right part of Fig. 8!. The possibilities of placing the empt
site in these cases can be further reduced to the cases s
in the second line of Fig. 8. The reason is that, since in e
time stepn trees burn down and are refilled inton11 empty
sites, with probability'1 for largen the empty site at time
t was a fire at timet21, i.e., at timet the empty site occu-
pies a place which would have been a tree in the unpertu
state. Therefore, we place the empty site at a tree site in
second line of Fig. 8. If instead we had chosen the neighb
ing tree sites, we would only have generated mirr
symmetric forms of the configurations shown. In the th
line the empty site has disappeared from our small sectio
the system and has become a tree with probability'1 for
n@1. In the left case, the pair of sites moves one latt
spacing due to the presence of the empty site. In the mid
case, two pairs which are separated by only one lattice
collide due to an empty site. In the right case, an empty
causes two neighboring pairs~which may have collided ear
lier! to annihilate each other and thereby symmetrize the
gion around the empty site. Therefore, sooner or later
pairs will have annihilated, and the entire system~with the
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exception of the single empty site! is in the symmetrical
state. This evolution to the symmetrized state was also
served in the simulations.

We can therefore restrict ourselves to consider the con
quences of the introduction of empty sites into such a hig
symmetrical state. This has the advantage that there is
need to consider the neighboring sites, because they are
affected. There are two possibilities to introduce an em
site. The first one is to remove a tree. In the next time s
this tree would have become a fire which it cannot do no
Instead, with very high probability a new tree is grown
this empty site. During the regrowth of trees the empty s
effectively moves to another site in the system~which would
have been a ‘‘tree site’’!. While there is one excess tree
one part of the system, there is one tree less in another pa
the system, so the total number of trees does not change.
number of fires, however, has decreased by one, since
prevented the ‘‘birth’’ of one fire. The second possibility
to remove a fire initially. If that happens, the empty site w
have moved after the tree-growth phase to a ‘‘tree site,’’ a
we have the first case again. Therefore, in each case
introduction of empty sites takes place completely at the
pense of fire sites and]r f /]reure50521.

The measured results for the slope of the order param
curve are shown in Table I. One can see that the slopes o
two-dimensional triangular lattice and the three-dimensio
hypercubic lattice are the same, since they have the s
coordination numberz56.

As mentioned earlier, not all tree densities between 0
1 are possible in the stationary state. If one transforms
r f(re) curves tor f(r t) curves viar f1r t1re51, one can
read off the diagram the allowedr t values~see Fig. 9!. For
these values it is possible to simulate the model with fix
r t . The results do not differ from the results with fixe
re . Also in this case, one has to be careful with the init
conditions, since there are sometimes two stationary st
for the same value ofr t , and the initial state determine
which of the two possible stationary states will be chosen
the system.
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