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Phase transitions in a forest-fire model

S. Clar, K. Schenk, and F. Schwabl
Institut fir Theoretische Physik, Physik-Department der Technischen Univiekitachen, James-Franck-Sife,
D-85747 Garching, Germany
(Received 11 July 1996; revised manuscript received 26 September 1996

We investigate a forest-fire model with the density of empty sites as a control parameter. The model exhibits
three phases, separated by one first-order phase transition and one “mixed” phase transition which shows
critical behavior on only one side and hysteresis. The critical behavior is found to be that of the self-organized
critical forest-fire mode[B. Drossel and F. Schwabl, Phys. Rev. Ld&®, 1629 (1992], whereas in the
adjacent phase one finds the spiral waves of the Bak, Chen, and Tang forest-fird Pndgleit, K. Chen, and
C. Tang, Phys. Lett. Al47, 297 (1990]. In the third phase one observes clustering of trees with the fire
burning at the edges of the clusters. The relation between the density distribution in the spiral state and the
percolation threshold is explained and the implications for stationary states with spiral waves in arbitrary
excitable systems are discussed. Furthermore, we comment on the possibility of mapping self-organized critical
systems onto “ordinary” critical system§S1063-651X97)04502-9

PACS numbg(s): 64.60.Lx, 05.70.Jk, 05.70.Ln

I. INTRODUCTION havior as the above mentioned models. The third phase
shows clustering of trees with the fire burning at the edges of
In 1990, Bak, Chen, and Tang introduced a simple modethe clusters.

for the spreading of a fire in a forest or the spreading of In the “spiral-wave” phase, which exists not only in this
disease in a populatidd]. The individualg(sites on a square model, but in a large number of excitable syste(fr a
lattice in two dimensionscan be in one of three states: tree review on excitable systems see, €[,,10]), we will point
(healthy, excitablg tree on fire(infected, excitef and ashes out an interesting relation to the nonequilibrium percolation
or empty site(immune or dead, refractoryNew individuals model of[11]. There, the tree density was the control param-
are “fed” into the system with a small rate. Whether the eter and the following rules were iterated) Lightning
third state is considered as death of an individual prabn-  strikes an arbitrary site in the system. If the site is occupied,
sequently as the birth rate of new individuals, or as a state dhe whole cluster of trees, which is connected to this site
immunity, and 1p as the time scale of the loss of that im- (by nearest-neighbor couplingourns down, i.e., the trees of
munity, is a matter of interpretation. In the following, we this cluster turn to empty sitegii) Thens new trees are
will use the terms tree, fire, empty site, and refeptas the  grown at randomly chosen empty sitéscluding the ones
tree growth rate. The exact rules of the mofEl were as  that have just turned emptyThe close relation between this
follows: (i) at each time step trees grow at empty sites with anodel and the model treated in the present paper will enable
small probabilityp, (ii) trees on fire will burn down at the us to identify the mechanism that determines the density dis-
next time step and turn to empty sitéi,) the fire on a site  tribution of excitable constituents and, in particular, the den-
will spread to the trees at its nearest-neighbor sites at theity immediately in front of excitation fronts in the spiral-
next time step. Although originally claimed to be critical in wave phase of excitable systems.

the limit p—0, the simulations iM2,3] showed that the Furthermore, the model presented in this paper, as well as
model does not display criticality. Instead, one could observéhe model in[11], are examples of reformulations of a SOC
guasideterministic spiral waves of fires. model in terms of a control parametfge density of trees or

In 1992, Drossel and Schwabl introduced the self-empty sites, respectively Both models indicate that the
organized critical forest-fire mod¢SOC FFM [4] with an  claim in[12] that all SOC models can be mapped onto ordi-
additional rule:(iv) if no nearest neighbor is burning, a tree nary critical systems exhibiting a subcritical phase, a critical
catches fire with a small “lightning” probabilityf. Under ~ phase with a smoothly varying order parameter and a critical
the condition of a double separation of time scdlte  point that separates the two phases, is not true in general.
between two lightning strokes fl/> (time scale of tree Nonequilibrium systems and their phase transitions show a
growth) 1/p > (time needed to burn down large tree clus-much richer behavior than equilibrium systems, with many
ter] the model shows critical behavior over a wide range offeatures that are unknown in equilibrium.
parameter values. The properties of this model were investi-
gated in, €.g.[5-8]. . . . IIl. THE MODEL

In this paper, we shall investigate a model with the same
type of interactions while keeping constant the number of The model is defined on d-dimensional hypercubic lat-
empty sites or immune individuals. Their density is the con-tice with L9 sites. If not stated otherwise, we choabe 2
trol parameter of the model. Parameters liker f do not  and periodic boundary conditions in the followingl ¢ sites
enter the model. We will show that the model exhibits threeare randomly chosen to be empty. The density of empty sites
phases, two of which can be shown to display the same b is the control parameter of the model. The remaining sites
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are randomly filled with trees and fires. Their densities are
denoted byp, andp; . It is alwaysp;+ p.+ps=1. The exact
values ofp, and p; in the initial state do not affect the sta-
tionary state, except in the vicinity of certain points which
will be discussed later.

The system is iterated as followg) all trees on fire will
burn down the next time stedii) the fire on a site will
spread to the trees at its nearest-neighbor sites in the next
time step(iii ) after each time step the same number of trees
that have burnt down grow at randomly chosen empty sites:
(including the ones which have just become emptyereby
keepingp. fixed, and(iv) if the fire dies out, a randomly
chosen tree catches fire spontaneously.

The motivation of rule(iv) is the following: We want to ,
investigate the system under the action of a vanishingly -
small lightning probability. Since the process which is de-
scribed by ruldiv) may then take very long in real time, but
nevertheless can be simulated in one iteration step,(iule
represents an acceleration of the real process. When calcu
lating temporal averages of the fire density, this point has to
be considered.

The reason for choosing the density of empty sites as
parameter and not the density of trees is the following: Con- FIG. 1. Snapshot of the stationary state in the “SOC” phase
sider a system that consists only of trees and replace one tr@ear the critical density%*~59.2%. L=2000 andp,=59.8%.
by a fire. In the next step we have four fires, but only oneTrees are black and empty sites are white.
empty site to grow new trees. This extreme example shows Cheg
that there might be situations in which it is not possible toS*(pe=pe”) % with some exponend. A snapshot of the
keep the density of trees constant. The density of emptgyStem in the vicinity ofpg™ is shown in Fig. 1.
sites, in turn, can always be kept constant for arbitrary values The critical behavior close tpg* can be described by
within the interval[0,1]. exponents which are defined as in percolation thdagj.

In the following sections, we discuss the properties of theTNe size distribution of tree clusters gs) s~ "C(S/Sma
stationary state as function of the density of empty siteé_""th a cutoff functloqc. Smax IS the stia of the Iargest.cluster
pe. In Sec. Ill, we start with a high density of empty sites in the system and diverges fpg—p¢™. Th?/fractal dimen-
and investigate the region of vanishing fire density. In Sec3'0n & of the clusters is defined big(s)=s™, whereRis
IV, we lower the density of empty sites which leads to a statéhe radius of gyratlcolniof a cluster. The correlation Iength is
with spiral waves. A detailed description of the mechanism@Ven by = (pe—pe™) . More exponents can be defined
which determines the density distribution in the spiral state if”d scaling relations between them can be deriged, e.g.,
given in Sec. V. Section VI investigates the more homoge!~—_2- . : : :
neous, “mixed” phase that can be observed after further The critical exponents found in the S|mulat|qns
decreasing the density of empty sites. Up to here, only two[T=2'14(4)’ p#=1.952), andv=0.2§ are the same as in

dimensional square lattices are considered. Section VIl trea Qe SOC FFM, when appropriately redefingiar » one has

: : _c1 1/6
other dimensions and lattice types. In Sec. VIII, we commen 0 chgngeAYarlflhbles 'I.ronlhldp tO_tpec'\lf?Af%eS;e Oc(f/.p) th
on the issue of mapping self-organized criticality onto ordi- see[8))). Also the critical density;” ~40.8% remains the

nary criticality. Finally, in the Appendix, we present some Z‘;‘Thee' ;gscrggﬁIaﬂzriﬁg%%ﬁaeﬁtgﬁ?ebZgg‘uigri'gCslsbehav'or
: , ystem
general properties of the order parameter curve. which is much larger than the correlation length, neither the
difference between a globally conserved dengity (this
Ill. REGION OF VANISHING FIRE DENSITY model and[11]) and a densityp., which is only conserved
AND CRITICAL POINT on an averagéSOC FFM, nor the difference between in-
stantaneous regrowth of treé¢this model] or delayed re-
For pe=<1, there exist only very small tree clusters, and,growth (SOC FFM and11]) can be seen on length scales
consequently, if one starts a fire by setting on fire a randomlyomparable to the correlation length.

chosen tree, it soon dies out, and one has to start a new one.In the stationary state of the SOC FFM
The average number of tresslestroyed by a fire therefore is 's=pp./f(1—p,), since in one time step there apgl 9f
finite and small, and in the thermodynamic linhit>c the  lightning strokes angh.L%p new trees are growing. There-
fire densityp; equals zerdtaking into account that rulév)  fore, if we measure in our modslfor a certain value of the
is an acceleration of a process which takes infinitely long incontrol parametep, we know that its behavior is that of the
real time. In our simulations the maximum system size wasSOC FFM forf/p=p./s(1—pe).

600C°. With decreasing,, s increases, but still remains
finite, and thereforep;=0. If p. is decreased further, we
finally arrive at a critical density p§'1~59.2% If we decrease the number of empty sites beyond the criti-
(pP=1—pS'~40.8%), wheres diverges with a power law cal pointpS? the size of the largest forest cluster diverges,

5

IV. REGION OF FINITE FIRE DENSITY I: SPIRALS
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tween spiral arms fop—0. If we start in our model with a
spiral state and increagg beyondpg’1 (corresponding to a
decrease op), the system does not undergo a phase transi-
tion at p.= pg~1, but chooses to retain the spiral state up to
peng'2~ 60.8%. This value op, with A=< corresponds

to p=0 in the Bak model. As function gf the order param-
eter follows the power lay;o p (see the explanation in Sec.
V).

As already found i2,3], the spiral state does not display
criticality or scale invariance in the sense of clusters or
events on all length scales. For a particular valug dhe
model does not show events on all scales, but only on the
scale 1p, and behaves essentially deterministic. However,
the model allows similarity transformations, since a system
with parametemp; can be obtained by rescaling a system
with parametep,.

What we have found is a discontinuous phase transition
which is neither of first nor of second order. We find hyster-
esis (the state of the system for a density in the interval
[pg’l;pgz] depends on from which side one approaches this
region, an order parameter that increases smoothly from

FIG. 2. Snapshot of the stationary state in the “spiral-wave” Z€f0 atpS? to finite values, and critical behavior on only one
phase forL=1000 andp,=59%. Trees are gray and empty sites Side of the transitionp(GBpg'l, the side with vanishing order
are white. The fires are black, but difficult to see. They are locategparameter The order parameter curve for a two-dimensional
at those lines where the density of trees changes abruptly. system is shown in Fig. 3.

The reason why the critical poirpte=pg‘1 is not an ordi-

and we would expect the fire not to be extinguished anyhary critical point is the same as fa1]. From Fig. 1, it can
more. Therefore, one might expect the fire denpitto be- ~ be seen that, in addition to large tree clusters, there exist also
have as an order parameter that sets ip&t and grows large clusters of empty sites. In contrast to ordinary critical
smoothly from zero to finite values, obeying some power lawPhenomenae.g., percolatiopy there is no _hqmogenelously
pfoc(pgyl_pe)ﬁ' Instead, the following behavior can be ob- dlstrlbutgd _S(_at of large clusters that could joinpat pg* to
served in the simulations: The system restructures, fires gatffierm an infinite cluster that spans the whole system. Rather,
ering to form spirals and the regions of different densitiesthe largest cIu_s'ter ha_s to compete with all other regions with
(see Fig. 1 vanishing in favor of a smooth density distribu- different densitiegwhich, due to the very nature of the dy-
tion between the spiral arngsee Fig. 2 The behavior of the Namics, are not_hlng more than_dlfferent growth stages of _the
spirals is quasideterministic. Immediately in front of the fire largest cluster itsejffor space in the system. Or, to put it

fronts the tree density is very high and immediately behinddifferently, an infinite cluster, like in percolation, is impos-
them it is very low. The density distribution is treated in Sible, because the system has to provide space not only for

more detail in Sec. V. The distance between two spiral the infinite cluster, but also for a large number of “younger”
arms is finite and constant throughout the system. The fir§0Pies of it. The violation of the hyperscaling relation
density forpe:pg,l_o is also finite. Decreasing, further, d=,u,(7'.— 1) also |nd|cat¢s the mhomogenepus distribution
the distance between the spiral arms becomes smaller and tRE d€nsity in the forest-fire model. As explained[8], the

fire density becomes larger, since it is now easier for the fir&//0lation is equivalent to the statement that not every part of
to survive. Atpe=p§’3~ 54.2%, the spiral state breaks down the system contains a spanning cluster at criticality.

and another restructuring to a new phase takes place, which
will be treated in Sec. VI.

For pespg'l the fire is able to sustain itself and it is no
longer necessary to keep it alive by setting on fire randomly In order to better understand the density distribution in the
chosen trees each time the fire has died out. The “externapiral state, we shall now investigate a state with a single
field” can be set zero. In terms of tree growth and lightning,front propagating through a square system with periodic
we have a model with tree growth rape but without light-  boundary conditiongsee the left side of Fig.)4 Since this
ning ratef. Therefore, the behavior in the spiral state at somecan be considered to be a section of a spiral dts¢e the
densityp. is exactly the same as in the forest-fire model ofright side of Fig. 4, and the spiral state, in turn, can be
Bak, Chen, and Tang ifil] for a certain value of the tree completely covered by such sectiotithe edge length is
growth probability p, since in the thermodynamic limit it chosen to be equal to the distankdetween two successive
does not matter which of the variables is kept fixed. Thearms of the spira)s it is sufficient to understand the density
fluctuations of the densities in the Bak model vanish fordistribution in this part of the whole system. Instead of suc-
L—oo, as do the fluctuations of the number of new growncessive fire fronts passing through the small section of the
trees per time step in this model. system, one might also think of a single fire front which

In the Bak model, one observes a diverging distance berepeatedly leaves the section at one end and reenters at the

V. DENSITY DISTRIBUTION IN THE SPIRAL STATE
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other end due to periodic boundary conditions. highest densityp} is then the average density of the original

The tree density immediately in front of the fire front smooth “single front” system in the region covered by the
pP® ™ has to be larger than or equal to the percolation threshith stripe (i~ p?®™"®and p!'~ p2"®). We also coarsen time,
old for site percolation on a square lattipg~0.59, for oth-  in that we consider the propagation of the fire front from the
erwise there would not be propagation. With increasing disbottom of one stripe to its top as one time step. Growing of
tance from the fire front, the tree density smoothly decrease$iew trees then takes place after eeabarseneytime step. If

until one finally arrives again on the other side of the front,0ne sets on fire the baseline of the stripe with highest den-
where the density takes its lowest valp@®". If p?ef"rewas sity, the infinite cluster in that stripe will surely be set on fire,

exactly the percolation threshold, the fire would burn down & ) ) .
vanishing fraction of all trees, and the propagation speed Jpropagation of the fire front effectively causes the removal of

e . _the infinite cluster from this stripe.
the front would be zero. The dgg:gmes in front of and behmuI The propagation of the fire front therefore can be modeled

the fire front would be equa_lo«f =pe=p;'“), as claimed o follows. First, we identify the infinite cluster in the stripe

in[2]. Hovxéefvrer_, the simulations clearly show that this is notyith highest density and remove it from the system. Doing

the casep;“*“is higher than the percolation threshold, the this one has to respect the boundaries of the stripes, although

densityp™'in a region after the fire has passed through it isthe infinite cluster of course extends into the neighboring

very low, but not equal to zero, and the propagation speed dftripes. The strength of the infinite cluster at dengifyis

the fire frontsu g is nonvanishing (0.2 0.05 site per itera- denotedP(py). [We now define also the densipf** of the

tion step neap?). What is the mechanism that determinesstripe which contained the infinite cluster after its removal,

the density distribution and the values of the density immei.e., p{”l:ptl— P(ptl) .] Second, theP(ptl)AZ/n trees of the

diately in front of and behind the fire front? infinite cluster are redistributed randomly amongst the empty
We shall approximate the periodic “single front” state sites of the whole system of siz¥?. If the system is to be

even further by a coarsened state with a finite but large nunrstationary, the stripes thereby just exchange their densities,

bern of stripes of equal width and different densities paralleli.e., the stripe with second highest dene,i»ﬁ/ now assumes

to the fire front. Each stripe has homogeneous density. Lehe highest density)tl, and so on. From that condition, one

pt, ... .p" be the densities of the stripes, starting with the can easily derive the equation

FIG. 4. A spiral state at densip,=59% with
distanceA between successive fire fronts can be
covered by quadratic “single front” sections of
edge length\. Trees are gray, fires are black, and
empty sites are white.
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Pit_lzPH(Ptl—P?H)(l—Pi)/[n(l—Pt)+Ptl_P?+l] and 0.078 foir the square lattice, 0.533 and 0.062 for the

triangular latticg, one arrives ap{?<aUaedg 392+0,002

for i=2,...n+1. The last factor on the right-hand side for the square lattice angl?°acuaed g 325+ 0.002 for the
represents the fraction of trees of the infinite cluster that argriangular lattice, in excellent agreement with the values

regrown in the stripe with density; . We finally obtain pS?=0.392+0.002 for the square lattice andpf?
=0.323+0.005 for the triangular lattice, measured in the spi-

1_101 1_p2 1-pn ral state of this model.
Lo ;: e = —nt+1 (1) Since Eq.(1) represents a geometric series, the density as
1=pt 1-p; 1-p function of the distance from the fire front is given by

Together with p,=(1/n)=,p; we haven equations for before x/A
n+1 densities. These equations were already derivédilih (x)=1—(1- after) 1-p

for a related model. The average density in a system with Pt Pt 1-pd ter |
n stripes is then

()

t
with p,(0)=p{"®=p;" andp,(A) = p{**"= p{
Nl n 1 im With our new knowledge about the nature of the spiral
1 1-p D 1-pi state, we can derive an equation for the distaideetween
Pt n = 1—p[‘+l the fire fronts as function of the tree growth probabilgy
Let the speed of the fire fronis;.(p 9 be measured in
ptl_p{Hl sites per iteration step. LikEB it depends on the density in
=1- (A= pDI(1— o H] =1} front of the fire frontp?®™™. The amount of matter burnt in
Pt Pt unit time is therP(p "9 v 4.(pP*°9 A. This has to be equal

In the system that we are really interested in, the densitf0 the number of growing trees per unit time~{p)pA?,
varies smoothly, so we have to consider largan [11] it ~ leading to the relationship

was argued thaditl has always to be greater than or equal to

a certain constani; ~0.625>p. . If this were not the case, P(p2" 90 e P9 1

a traversing fire front would leave behind large tree clusters A= 1-p, 5 4)
which would lead to inhomogeneities that prevented the next

fire front from passing through in the same quasideterminisThis confirms the observed scaling behaviorp~* and ad-

tic way than the first one. Likewisgy'** has always to be ditionally delivers the constant of proportionality, being
greater than or equal to another constant0.63+0.05 for pP*™=p* and in good agreement with the
pi =pt —P(pf)~0.078.p; is always larger than the corre- simulations. Since the fire density is inversely proportional to
sponding percolation threshola.. These constants have a the distance between the spiral arms, we fpdp, i.e., the
more fundamental significance independently of this modebrder parameter exponeyt equals one. This can also be
and of any states with spiral wavéfer details se¢11,14)).  seen from the equalitp;= pp. [15], which states that the
The casep;=p; and p{"'=p; corresponds to the lowest number of burnt trees has to be equal to the number of new
possible overall density and therefore to the state with infigrown trees in the stationary state.

nite spirals atp=0 or p,=pS2. In this case, we have If one chooses a fixed site behind the front and wants to
p%)efore: p¥ andp?“er: v know the tree density in this region as function of the time
The overall density in the spiral state can then be writterf until at T=A/vg the next front passes through, one has to
as replace in Eq(3) x by vt and arrives with Eq(4) at
before_ _after before! [(1_Pt)/P(PFefor(§] ot
t P _ after 1-p
pr=1— i 1_pbefor —1i p=1=(1=p:) 1_—paftﬁ ’
limg_.n <—tafte_re) 1} t
L\ 1—py

which with Eq.(2) and P(p?®"™ = pPelore_ pafter jeads to

before__ _after
t t

=1- T P =1 (1= p{")e P ()
1 f— t o0 —
I|mn%)n_1 In( 1-pd E‘:) / n= 1} Equation (5) can also be derived easily from
dpilot=p(1—p,), first stated in[2]. This shows that our
ppefore_ after picture is in accordance with the basic equations describing
t t .
=1- A (2)  the spiral state.
In( P ) One additional point concerning E¢4) should be men-
1 pPefore tioned. Equatior{4) relatesA, p,, andp. If one regards, e.g.,

A as fixed, only the product (Zp;)p is determined. This
For p{*™"=p¥ and p2"®'=p{", this density should be equal reflects the fact that in a “single front” state with fixed edge
to the densityp{? of the state with spirals of infinite exten- length A one can have different overall densitips. The
sion. With the values op; andp; measured if11] (0.625 other quantities adjust themselves automatically. However,
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in the “real” spiral state, fixingA determines invariably all

connecting “single front” systems, this seems to be a con-
tradiction. The solution of this apparent contradiction is that
one has neglected the spiral centers. They vyield a second,:
unfortunately unknown, relation betwedn p,, andp. This
relation is brought about by the rotation of the spiral centers.
p: and p determine the angular velocity of the rotation,
which, in turn, determined via A=vgT=ve2m/ w. FOr
the calculation otof'2 with Eq. (2), using the decomposition
into “single front” states, it is justified to neglect the spiral %
centers, because in the thermodynamic limit their number "?ﬁ "
density is zero. Nevertheless, one has to be aware of the factk-é -
that, although not important for calculatingf’z, the spiral :
centers are the “pacemakers” of the spirals and therefore ;g:“:,S
responsible for the magnitude Af. Eeos
Another interesting point is that the densji§® can also
be found from an extremum principle first stated [
There, the extremum principle was erroneously used to de- ;
termine the critical densitp{™ of the SOC FFM. The fire
was believed to destroy as many trees as it can at the critical
point, but the result=39% was in contradiction to the mea-
sured valueptc'1~40.8% [5—8]. However, the equations de- FIG. 5. Snapshot of the stationary state in the “mixed” phase
rived in [4] from the extremum principle can easily be seennear the critical densitypg*~54.7%. L=180 and po=54.6%.
to be equivalent to Eq(2) for the spiral state. Therefore, the Trees are gray, fires are black, and empty sites are white.

principle yields the correct critical density, but for a differ- i ) )
ent, then unknown, phase of the model. fronts. This change occurs continuously. The fronts, which

From the results found in this section one can draw som@&r€ more irregular than the spirals, have also peen observed
conclusions for excitable media in general. In many excitabldn the model of Bak, Chen, and Tang. Decreasipdurther,
systems stationary states with spiral waves can be found€ coherence length of the fronts soon becomes comparable
Famous examples are, e.g., the Belousov-Zabhotif&X) with the lattice constant, and the system reorganizes itself
reaction[16] or the electrophysiological activity of heart tis- dlscontlnuogsly into ano'Fher state, which cCé)nstltutes the third
sue[17]. If the spirals are to sustain themselves in a stationPhase of this model. This happenspt= pe~~54.2%. The
ary state, the density of the excitable constituefttee  Simulations show that the trees in the new state tend to
“fuel” ) in a region immediately before a fire front passes'cluster” (to form regions with higher tree densjtyith the
through it p?efore has always to be larger than or equal to fire burning at their edgesee Fig. 5. To sustain this type of
some thresholg? , which, in turn, is larger than the perco- structure, a certain minimum density of fires is needed. At

lation thresholdp, for that particular situation. The percola- pe=pg”°, pt jumps from 2% to 10%. If one lowers, fur-

tion threshold can, in principle, be measured by preparing éper, the size of the “clusters” decreases, and the fire density

homogeneous system with a certain density of excitable corincreases. The system as a whole becomes more homoge-

stituents and “exciting” one edge of the system. If the re-Neous (trees, fires, and empty sites are “mixed”For

sulting excitation front dies out before reaching the other ende=0, We observe,=p;=1/2 for all dimensions and lattice

of the system, we are still below the percolation thresholdlyPes. The order parameter curve starts linearfy.at0 with

and if it reaches the other end in finite time we are above. AR Slope that depends only on the number of nearest neighbors

the percolation threshold the front barely survives and need® (€€ the explanations in the AppendiX we start with

an infinitely long time to reach the other end. The overallSmall pe and traverse the phase transition in the other direc-

density of the excitable constituents has to be above th#on, it takes place at different, (pi*~54.7%>pg?, i.e.,

valuepf'z, below which no excitation can be sustained. one has a first-order phase transition with hysteresis. The
A system that displays spiral waves or avalancfeesm-  order parameter as function of the density of empty sites is

centric waves, target pattejndepending on the density of Shown in Fig. 3.

excitable constituents are, e.g., populations of dictyostelium

discoideum amoebdé@8]. There, circular waves of signaling VIl. DIMENSIONS OTHER THAN TWO

activity emanating from pacemakers are found for low cell AND DIFFERENT LATTICE TYPES

densities, whereas for high cell densities one observes spiral

waves.

Since in one dimension there cannot exist spiral waves,
we expect a simpler phase diagram than in two dimensions.
VI. REGION OF FINITE EIRE DENSITY II: For p(?=0 we are dealing with a completely deter_mlnlstlc
one-dimensional cellular automaton where each site can be
THE MIXED PHASE . .
in one of two stategfautomaton no. 54, according to the
With decreasing., the distance between the spiral armsclassification scheme of Wolfrafil9]). In the stationary
becomes smaller and the spirals finally break up to singlstate each tree has at least one fire as a neighbor and vice
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FIG. 6. The order parameter fire densjy as function of the

density of empty sitep, in one dimension—, nearest-neighbor d Fl_(tB' 7f Thet orqter pz-arzirr?eterdflre de_ns;iy_?ﬁ fun(;,tlon loft_the f
interaction; . . ., the fire isallowed to jump over one empty site if ensity of émply Sitepe In three dimensions. The exirapolation

necessaiy For p,>pl?~0.2 andp,>pSi~0.26, respectively, the e fire curve yields the critical densipf*~77.1%=*0.2%.

fire dies out. In the reverse directiom; remains zero until

pe=pSt=0. stead, now isolated chunks of trees are ignited and burn
down in finite time. In the reverse directiop; remains zero

versa. Strings of more than two trees or fires are not stabléintil pe=p¢*=0, i.e., the hysteresis in one dimension is
since sooner or later they would be invaded by fires. Thenaximum. In the vicinity of the point{.=0,0=0), the
stationary state is periodic with period 2. The introduction ofcritical behavior of the SOC FFM in one dimensif20] is
empty sites makes the automaton nondeterministic, becaugeproduced. Since there exists no spiral phase in one dimen-
the trees can now choose where to grow. This variant has nsion, there are np? and p&°.

been investigated so far. In the simulations, system sizes of The two-dimensional simulations were also done with a
up to L=10" were used. The measured order parametetriangular lattice and yielded the same behavior as for the
curves for the one-dimensional case can be seen in Fig. 6. Bruare latticéfor the order parameter curve see Fig. Bhe
addition to the usual nearest-neighbor interaction, we simuvalues ofp§'1’2'3'4and the slope of the order parameter curve
lated also a variant where the fire is allowed to jump overfor p.— 0 of course are differen(see Table)L

one empty site if necessary. The curves start linearly at In three dimensions, we could identify a subcritical phase
ps=p¢=1/2 with different slopegfor an explanation see the as well as a mixed phase. The order parameter curve is plot-
Appendiy. For increasingp, one observes the same phe-ted in Fig. 7. Due to small (L<2300) the critical exponents
nomena as in two dimensions. The tree clusfetengs in  in the subcritical phase and the critical dengify* could not

one dimensior{1D)] become larger and are accompanied bybe measured with sufficient accuracy. The mixed phase in
fire on at least one of their ends. Afte=p§'4~ 20%  three dimensions shows analogous behavior to the two-
(pg"‘m 26% for next-nearest-neighbor interactiche den- dimensional mixed phase and does not display new phenom-
sity of empty sites is too high for this structure to survive,ena. The fire density curve could not be measured for very
and the fire density drops from a finite value of approxi-small p; (ps=0.2%), due to finite size effects. If one ex-
mately 20% to zero, since the system does not have thwapolates the fire density curve to the point=0, one ar-
possibility to rearrange itself into a spiral-wave phase. In-rives at 77.3%, therefort,ao,g*4 lies between the last simulated

TABLE I. The simulation results for various dimensions and lattice types. In the cast) 1bBe fire was
allowed to jump over one empty site, if necessary.

Lattice type 1D 1D(*) 2D 2D triangular 3D
pSt 0% 0% 59.21)% 66.44)% 2 78.1(1)%2
pS? . - 60.95)% 67.15)% -
pg,S - - 54.2% 61.7% -
pS? 20% 26% 54.7% 62.2% 712%
) 1.001) 0.851) 0.671) 0.541) 0.551)

Pt
ape pe:0

&Taken from[8].
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density 76.9% and 77.3%, i.@S*=77.1%+ 0.2%. The fact

that there exists a gap between the end point of the critical @ O uee LI empty site
phasepS'~78.1% (taken from[8]) and the end point of the 000000 0000 (00
mixed phasepg'4 leaves open the possibility of the existence \. oo ; O OO . 00 e0OrNe

. .. . A, (
of spiral waves(scroll wave$. Due to the finite size of our <= ~ - ~ -
) . ) QO ( O@C
sample, however, we could only observe two-dimensional, e 00 COOLL 0000
flat fire fronts in that region. The results for all simulated symmetrized state
lattices and dimensions can be seen in Table I. "YoX oI 1oI oI 1o

; e ) \ o
of a third phase containing the three-dimensional analogontime e e 00000 OO0
o

VIIl. MAPPING SELF-ORGANIZED CRITICALITY

FIG. 8. The possible effects of the introduction of one empty
ONTO CRITICALITY

site into a one-dimensional systemggt=0.

The model we have investigated in this paper is an ex-
ample of a system which is far from equilibrium. It shows aseem to point in that directignwhile there also exist genu-
wealth of interesting structures depending on the density oihe SOC models for which this procedure cannot be carried
empty sitesp.. For largep., we find a region of vanishing through. The forest-fire model seems to belong to the second
fire density which contains the critical behavior of the SOCclass.
forest-fire model. For lower density of empty sites we obtain We suggest that similar phenomena and difficultmi-
the spiral waves of the Bak, Chen, and Tdrdd model. cal regions, hysteresis at the critical point, critical behavior
Finally, for even lowerp,, we find a phase in which the on only one sidewill also be found in other models of SOC,
trees show the tendency to form clusters with the fire burningts, e.g., the sandpile, earthquake, and evolution models.
at their edges. The transition between the second and the
o e “s[JENSChallDFG Lnder Conrac No. Schw 348171 We
' . " . : - “Rank B. Drossel for fruitful discussions.
find hysteresis and critical behavior on only one side of the
transition. The close relation of the spiral-wave phase with
the synchronized phase of the model[afl] allows us to APPENDIX: SOME PROPERTIES
understand the mechanism which determines the density dis- OF THE ORDER PARAMETER CURVE
tribution in the spiral state of not only this model, but of
arbitrary excitable systems. In particular, it yields the density ~All order parameter curves considered in the previous sec-
in front of the excitation fronts, the minimum density of tions started at the poing¢=p;=1/2,0=0. This starting
excitable constituents that is necessary to sustain the excit@0int is independent of dimension or lattice type, which can
tion, and the factor of proportionality between the distance oPe seen as follows. Fqr.=0 each tree will sooner or later
the spiral arms and the “tree growth” rafe be set on fire by one of its nearest neighbors. Once having
Apart from being interesting in its own right, the model Set the tree on fire, the fire jumps forever between this site
presented in this papélike the model of11]) has to be seen and its neighbors, because its neighbors, after burning down,
also in the context of the general claim [¥2], that the have to become trees again in the next time élegre are no
critical points of SOC models can be regarded as ordinargmpty siteg The dynamics of these1z sites then is fixed.
critical points of second-order phase transitions. It wasAfter each time step trees and fires change places. But the
claimed in[12] that this should be possible for all SOC mod- fire can still propagate to other sites, so that finally the whole
els. There were also given instructions on how to achievéystem consists of such “blinking” regions. The state is pe-
this goal for some particular models, including the forest-fireriodic with period 2 and the average fire and tree densities
model. have to be 1/2. For a random initial state the densities are
The results in this paper and ji1], however, disprove 1/2 also without averaging.
this hypothesis. While the subcritical side of the transition in  The slope ofp;(p.) for p.—0 depends only on the num-
both models behaves as expected, the other @itz side  ber of nearest neighborsand lies always within the interval
with a supposed nonvanishing order parametdways ex- [—1;—1/2]. This can be seen as follows. If one takes a
hibits surprising features. In the model [df1] we found a stationary state ap,=0 and inserts some empty sites by
whole critical region and lots of first-order phase transitionsremoving an equal number of trees and fires, the system will
whereas the actual model shows hysteresis and no criticalityot remain in this statéwith a slope of—1/2), but will
at all. adjust itself to a new stationary state with an even lower
Although these “negative” results cannot strictly rule out number of fires, since the spreading conditions for the fire
the possibility that for some further slight change of the rulesare now worse than before due to the inserted empty sites.
one might succeed in obtaining the usual “decent” behaviorThe magnitude of this effect depends only on the coordina-
of the order parameter, the argument at the end of Sec. I\tjon numberz. The larger iz, the smaller is the effect. On an
together with the simulation results of this paper anflldff  infinite-dimensional lattice, the fire density will not readjust
make it seem very unlikely. We consider it to be more prob-tself at all, because no fire can feel the empty sites. The
able that a subset of SOC models are “only” ordinary criti- slope in this case is the maximum possible slepE2. This
cal models “in disguise.” With these models the mapping can also be seen mathematically. All fires have been trees in
proposed i 12] should be possiblé&he results if21] also  the preceding time step, therefopg<p, in the stationary

This work was supported by the Deutsche Forschungsge-
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state. Withp;+pe+p;=1 it follows p;<1/2—p /2. Since exception of the single empty sjtés in the symmetrical
for p.=0 both sides of the last inequality are identical, onestate. This evolution to the symmetrized state was also ob-
can differentiate and findspf/ape|pe:0s—1/2. 1/2 is the served in the simulations.
upper bound for the slope. We can therefore restrict ourselves to consider the conse-

The lower bound for the slope equalsl. This value is quences of the introduction of empty sites into such a highly
assumed for one dimension, as will be shown in the follow-symmetrical state. This has the advantage that there is no
ing by considering the effect of introducing one empty siteneed to consider the neighboring sites, because they are not
into the stationary 1D state gh,=0. Since the one- affected. There are two possibilities to introduce an empty
dimensional lattice has the smallest possible number ofite. The first one is to remove a tree. In the next time step
neighbors, its slope represents the lower bound. As argued this tree would have become a fire which it cannot do now.
Sec. VII, in the one-dimensional stationary stateat 0 no  Instead, with very high probability a new tree is grown at
more than two neighboring sites can be in the same state. lifis empty site. During the regrowth of trees the empty site
a symmetric state, where both neighbors of a tree are firegffectively moves to another site in the systémhich would
and vice versa, !.e., where fires a_nd Frees are strictly aIt(-:-_rnaﬁ‘—J“,e been a “tree site’ While there is one excess tree in
ing, an empty site does not modify its neighborhood. Since)ne part of the system, there is one tree less in another part of
the effects of the empty site are only local, it is sufficient t0,o gystem, so the total number of trees does not change. The
consider only three cases: One pair of sites in the same stafg, oy of fires, however, has decreased by one, since we
(msii?jg?)aliﬂofliir; O;, I;Ir?d)irfgi"rllﬁlz;?osfo':‘vz\?vopggisrgzi :Eg prevented the “birth” of one fire. The second possibility is

: to remove a fire initially. If that happens, the empty site will

right part of Fig. 8. The possibilities of placing the empty . o
site in these cases can be further reduced to the cases shoWﬁve maved aﬂer the tree-grpvvth phase to a tree site,” and
e have the first case again. Therefore, in each case the

in the second line of Fig. 8. The reason is that, since in eacll : .
time stepn trees burn down and are refilled inte- 1 empty mtroducno.n of _empty sites takes place completely at the ex-
sites, with probability~1 for largen the empty site at time Pense of fire sites andp(/dpe| o= —1.

t was a fire at time—1, i.e., at timet the empty site occu- The measured results for the slope of the order parameter
pies a place which would have been a tree in the unperturbeglirve are shown in Table I. One can see that the slopes of the
state. Therefore, we place the empty site at a tree site in tH&vo-dimensional triangular lattice and the three-dimensional
second line of Fig. 8. If instead we had chosen the neighborypercubic lattice are the same, since they have the same
ing tree sites, we would only have generated mirror-coordination number==6.

symmetric forms of the configurations shown. In the third As mentioned earlier, not all tree densities between 0 and
line the empty site has disappeared from our small section of are possible in the stationary state. If one transforms the
the system and has become a tree with probabiity for  ps(pe) curves tops(p;) curves viaps+p;+pe=1, one can
n>1. In the left case, the pair of sites moves one latticeread off the diagram the allowes] values(see Fig. 9. For
spacing due to the presence of the empty site. In the middlthese values it is possible to simulate the model with fixed
case, two pairs which are separated by only one lattice sitp;. The results do not differ from the results with fixed
collide due to an empty site. In the right case, an empty sit@,. Also in this case, one has to be careful with the initial
causes two neighboring paif@hich may have collided ear- conditions, since there are sometimes two stationary states
lier) to annihilate each other and thereby symmetrize the refor the same value op,, and the initial state determines
gion around the empty site. Therefore, sooner or later alWhich of the two possible stationary states will be chosen by
pairs will have annihilated, and the entire systémith the  the system.
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